• Self-inductance (L) is the ability of a circuit to oppose the magnetic flux that is produced by the circuit itself

  • Running a changing current through a circuit creates a changing magnetic field, which creates an induced emf that fights the change

  • Units are henrys (H)

    • C:\\266298A5\\73477446-49B2-471B-AFDD-BCD03931DCDD\_files\\image477.png
  • Self-inductance is purely a function of the circuit's geometry

Calculating Self Inductance

  • C:\\266298A5\\73477446-49B2-471B-AFDD-BCD03931DCDD\_files\\image478.png

  • Ratio of magnetic flux to current flow

  • C:\\266298A5\\73477446-49B2-471B-AFDD-BCD03931DCDD\_files\\image479.png

  • For inductor:

    • C:\\266298A5\\73477446-49B2-471B-AFDD-BCD03931DCDD\_files\\image480.png
  • For capacitor:

    • C:\\266298A5\\73477446-49B2-471B-AFDD-BCD03931DCDD\_files\\image481.png

Example 1: Self Inductance of s Solenoid


  • Calculate the self-inductance of a solenoid of radius r and length L with N windings

  • C:\\266298A5\\73477446-49B2-471B-AFDD-BCD03931DCDD\_files\\image483.png

  • C:\\266298A5\\73477446-49B2-471B-AFDD-BCD03931DCDD\_files\\image484.png

Example 2: Calculating Self Inductance

  • Calculate the self-inductance of a solenoid with 3400 turns of wire if the solenoid is 9 cm long and has a diameter of 11 cm.

  • C:\\266298A5\\73477446-49B2-471B-AFDD-BCD03931DCDD\_files\\image485.png

Inductor, Capacitor, and Resistor

dt Mechanical VI k(V2 — VI spring bs 'U Electrical di i Cd@2 VI dt F
 = bd(V2 VI dt VI inerter damper 1 inductor capacitor 1 resistor

results matching ""

    No results matching ""